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TLDR

The behaviour of learning-rate schedules in LLM training can be described with convex
optimization theory (surprisingly!).
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Figure 1. Real loss curves (left) and theoretical bound (right)

History/Background

I For optimal performance, the cosine schedule needs to match total number of iterations
[3].

I More practical alternative: constant + cooldown schedule (called wsd) [2]. Observe
sudden drop of the loss during cooldown.

Research Questions

Question 1: What does optimization theory say about learning-rate schedules?
Question 2: What happens during cooldown?

Setup

Solve minx∈Rd f (x) with
xt+1 = xt − γηtgt, (SGD)

where γ > 0 is base learning-rate and (ηt)t∈N is schedule.

Takeaway 1

Standard bounds of the form
min

t=1,...,T
E[f (xt) − f (x?)] ≤ ΩT

do not reflect the real-world performance.

 Need to look at last-iterate bound!
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Last-iterate bound

Bound by (Defazio et al., 2023): Let D := ‖x1 − x?‖. If f is convex and G-Lipschitz, then

E[f (xT ) − f (x?)] ≤ 1
2γ

∑T
t=1 ηt

[
D2 + γ2G2
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η2
t

]
+ γG2

2

T−1∑
k=1

( ηk

(
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t=k+1 ηt)(
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t=k ηt)

T∑
t=k

η2
t

)
=: ΩT .

Compute optimal base learning-rate γ? by hand (∼ tuning). Plugging in cosine and wsd
produces the figure from the beginning.

Takeaway 2

I Bound from convex, nonsmooth optimization reproduces the empirical behaviour
of LR schedules. (we don’t know why)

I Bound predicts that γ?(cosine) ≈ 2 · γ?(wsd). This matches in practice.
I Cooldown in wsd achieves an improvement of log(T ).
I Bound predicts the optimal cosine cycle length reported in [3].
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Figure 2. (Left) cosine and wsd schedule. (Right) Optimal base learning-rate γ?.

Applications

(1) Continual training: Extend training length from T1 (short) to T2 (long) steps without
starting from scratch by reusing constant LR checkpoint. Problem: optimal base LR decreases
with training length. We can (i) decrease schedule during [T1, T2] or (ii) extend cooldown
length for the long run.
 For both approaches, use the bound as testbed for schedule design!
 Improvements equivalent to ∼ 7% of additional steps (see experiments).

(2) Learning-rate transfer: If we know optimal base LR γ? for some schedule, can we
infer the optimal LR for a different schedule? For example, transfer from cooldown length
20% to 100% (linear-decay).

Experiments

We train Llama-style transformer models (124M and 210M) on SlimPajama-6B dataset.
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Figure 3. Continual training, approach (i). (Left) Schedule design, (right) loss
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Figure 4. Continual training, approach (ii). (Left) 124M model, (right) 210M model
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Figure 5. (Left) Different cooldown lengths, (right) learning-rate transfer
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