

Fabian Schaipp¹

TLDR

How to use knowledge on lower bounds of the loss to reduce tuning effort for the learning rate of momentum methods like SGD-M and Adam.

Background

We consider training problems of the form

$$\min_{x \in \mathbb{R}^d} f(x), \quad f(x) = \mathbb{E}_{s \sim \mathcal{D}}[f(x,s)],$$

with parameters $x \in \mathbb{R}^d$, batch of data s from train set \mathcal{D} , and loss f(x, s).

Model-based stochastic optimization (cf. [1, 2])

Many stochastic optimization methods can be summarized as follows: in each iteration sample s_k , then build model $m_k(x)$ of the loss, then update

$$x^{k+1} = \underset{x \in \mathbb{R}^d}{\arg\min} \ m_k(x) + \frac{1}{2\alpha_k} ||x - x^k||^2.$$

1) Linear model: if we choose $m_k(x) = f(x^k, s_k) + \langle g_k, x - x^k \rangle$ where $g_k = \nabla f(x^k, s_k)$, then

$$x^{k+1} = x^k - \alpha_k q_k.$$

2) Truncated model: if we know a lower bound $\inf f(\cdot, s)$ of the loss (for example, zero is often a lower bound), then a better model is (c k)

$$m_k(x) = \max\{f(x^n, s_k) + \langle g_k, x - x^n \rangle, \text{ inf } f(\cdot,$$

This leads to the stochastic Polyak step size [6, 4]

$$x^{k+1} = x^k - \min\left\{\alpha_k, \frac{f(x^k, s_k) - \inf f(\cdot, s_k)}{\|g_k\|^2}\right\}$$

Figure 1. Denote $\Psi_k(x) := m_k(x) + \frac{1}{2\alpha_k} ||x - x^k||^2$. Left: Linear model $m_k(x) = f(x^k, s_k) + \langle g_k, x - x^k \rangle$. Right: Truncated model $m_k(x) = \max\{f(x^k, s_k) + \langle g_k, x - x^k \rangle, \text{ inf } f(\cdot, s)\}.$

Observation 1

Because SPS uses a better model, it needs less tuning for the user-specified learning rate α_k than SGD.

MoMo: Momentum Models for Adaptive Learning Rates

Ruben Ohana²

¹Technical University of Munich

Michael Eickenberg²

²Flatiron Institute, CCM

Research Questions

Question 1: In practice, momentum typically improves training. How to combine momentum and SPS?

Question 2: Can we improve upon Adam by using a better model?

MoMo: model-based momentum

(1)

(2)

(SGD)

 $, s) \}.$

(SPS) g_k .

Main insight: Build a model for f(x) and not for f(x,s). We can build a model of f(x) by taking a weighted average over past data points. With weights $\rho_{j,k} > 0$ and $\sum_{j=1}^{k} \rho_{j,k} = 1$, we have that

 $f(x) = \mathbb{E}_{s \sim \mathcal{D}}[f(x, s)] \approx \sum_{s \sim \mathcal{D}} [f(x, s)] \approx \sum_{s \sim \mathcal{D$

Linearizing each loss around the point it was last sampled gives the model

$$m_k^{\text{avg}}(x) := \sum_{j=1}^k \rho_{j,k} \left[f(x^j, s_j) + \langle \nabla f(x^j, s_j), x - x^j \rangle \right]$$

Using exponential moving averages, that is $\rho_{j,k} = (1 - \beta)\beta^{k-j}$, update (2) with $m_k^{\text{avg}}(x)$ turns out to be SGD with momentum [5], given by $d_k = \beta d_{k-1} + (1 - \beta) \nabla f(x^k, s_k),$ (SGD-M)

 $x^{k+1} = x^k - \alpha_k d_k.$

Our method: truncate the *momentum model* at a lower bound estimate f_*^k $m_k(x) := \max\{m_k^{avg}(x), f_*^k\}.$ (3)E.g. $f_*^k = 0$ for positive losses. Plugging (3) into update formula (2) gives $\frac{d_k, x^k \rangle - \gamma_k - f_*^k)_+}{\|d_k\|^2} \} d_k, \text{ (MoMo)}$ $(s, s_k), x^k \rangle$ MoMo can also handle weight decay by adding a term $\frac{\lambda}{2}||x||^2$ in (2).

$$x^{k+1} = x^k - \min\left\{\alpha_k, \frac{(\bar{f}_k + \langle d_k \rangle)}{\bar{f}_k := \beta \bar{f}_{k-1} + (1 - \beta) f(x^k, s)\right\}$$
where $\bar{f}_k := \beta \bar{f}_{k-1} + (1 - \beta) f(x^k, s)$

$$\gamma_k := \beta \gamma_{k-1} + (1 - \beta) \langle \nabla f(x), S \rangle$$

$$\gamma_k := \beta \gamma_{k-1} + (1 - \beta) \langle \nabla f(x), S \rangle$$
Mo conclusion boundle under decomposite bounded in

An Adam version

We can see Adam [3] as preconditioned SGD $v_k = \beta_2 v_{k-1} + (1 - \beta_2)(g_k \odot g_k)$ $x^{k+1} = x^k - \alpha_k \mathbf{D}_k^{-1} d_k.$

This is a model-bas

ased update with adaptive norm:

$$\substack{k+1 \ = \arg\min m_k^{\text{avg}}(x) + \frac{1}{2\alpha_k} \|x - x^k\|_{\mathbf{D}_k}^2.$$

Plugging in the MoMo model (3) instead, we obtain $x^{k+1} = x^k - \min\left\{\alpha_k, \frac{(\bar{f}_k + \langle d_k, x^k \rangle - \gamma_k)}{\|d_k\|_{\mathbf{D}_k}^2}\right\}$

(compatible with weight decay, omitted bias correction here for simplicity) **Note:** The same technique can be applied to any preconditioner $D_k!$

Aaron Defazio³ Robert M. Gower²

³Meta AI, Fundamental AI Research

$$\sum_{j=1}^{n} \rho_{j,k} f(x,s_j).$$

D-M, that is
$$\mathbf{D}_k = \varepsilon + \sqrt{v_k},$$

$$\frac{g_k - f_k^{\kappa})_+}{2} \mathbf{D}_k^{-1} d_k$$
. (MoMo-Adam)

If $f(\cdot, s)$ is convex, interpolation $\inf f(\cdot, s)$ $f(x^*, s)$ holds for all s, and has *locally bouned gradients* with $\max_{x: \|x-x^*\| \le \|x^1-x^*\|} \mathbb{E}_{s \sim \mathcal{D}} \|\nabla f(x,s)\|^2 =: G^2 < \infty$ then MoMo with $f_*^k = f^*, \ \alpha_k = +\infty \text{ converges}$ \sim

 $\min_{k=1,\ldots,K} \mathbb{E}[.$

The step size of MoMo is the minimum of a *(user-specified) learning rate* α_k and an *adaptive term* (computed on the fly).

Figure 2. On the x-axis, we vary the (constant) learning rate α_k . Left: DLRM on Criteo. Right: ResNet110 on CIFAR100.

- Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
- convergence. In AISTATS, 2021.
- . Polyak. Introduction to optimization. 1987. Boris T

ICML 2024

FLATIRON

Theory

$$[f(x^k) - f(x^*)] \le \frac{G\|x^1 - x^*\|}{\sqrt{K}(1 - \beta)}$$

+ online lower bound estimation (see paper for details).

Experimental setup

Main question: can this reduce the tuning effort for α_k ?

Results

Figure 3. Left: ViT on Imagenet. Right: Diffusion model; Adam diverges for large α_k .

References

Hilal Asi and John C. Duchi. Stochastic (approximate) proximal point methods: convergence, optimality, and adaptivity. SIAM J. Optim., 2019. Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly convex functions. SIAM J. Optim., 29(1):207–239, 2019.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic Polyak step-size for SGD: An adaptive learning rate for fast . Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Phys., 1964

pip install momo-opt

@FSchaipp