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TLDR Research Questions Theory
How to use knowledge on lower bounds of the loss to reduce tuning effort Question 1: In practice, momentum typically improves training. How If f(-,s) is convex, interpolation inf f(-,s) = f(z*s) = f*
for the learning rate of momentum methods like SGD-M and Adam. to combine momentum and SPS? holds for all s, and has locally bouned gradients with
~ 2 . .
Question 2: Can we improve upon Adam by using a better model? mkaxfi|\f—5’f*”§\’$1—f’?’*” Lsn||[ V[ (2, 8)[[7 =1 G° < oo then MoMo with
Background 1o = f* «a = 400 converges
Gllz' — 2|
. N MoMo: model-based momentum min_E[f(z") — f(z")] < .
We consider training problems of the form k=1,...K S@) = @) K(1—p3)
f;%@ flz),  flz)=Esp|f(z,s)], (1) Main insight: Build a model for f(z) and not for f(z,s). + online lower bound estimation (see paper for details).
with parameters v € RY, batch of data s from train set D, and loss f(x,s). We can build a model of f(z) by taking a weighted average over past data _
points. With weights p;; > 0 and Zle pik = 1, we have that Experimental setup
Model-based stochastic optimization (cf. [1, 2]) "
. . . . o N | | The step size of MoMo is the minimum of a (user-specified) learning rate
Many stochastic optimization methods can be summarized as follows: in each f(x) =Esop|f(z,5)] = Z pirf(x,s;). 4 Jantive t ( ted on the fly)
iteration sample si, then build model my(z) of the loss, then update j=1 Ctk ant ah adaptive term {Computed on the Ty).
- | 1 - Linearizing each loss around the point it was last sampled gives the model Main question: can this reduce the tuning effort for ay.?
" = argmin my(x) - |z — a™||°. (2) .
reR? k avg ; . .
. . e . : . v ]7 . : - .] .
1) Linear model: if we choose my(xz) = f(2*, s1) + (gr, v — 2*) where =) z;p]’k Ll 5) + (VI 5)), @ = o) Results
)=

gr = V f(z", s;), then

. . . . —9 adam momo momo-adam sed-m —®— ad —— —— ~ad d-
bl Using exponential moving averages, that is p;, = (1 — 3)5" 7, update TOT i T momo 7O momornd « » Ao T momo T momonadam T skam
— — . . . 0.800 :
o v OkGk (SGD) (2) with m; () turns out to be SGD with momentum [5], given by J—
_ . 0.775 - 0.8 -
2) Truncated model: if we know a lower bound inf f(-,s) of the loss di = Bdp_1 + (1 — B)V f(a", s), (SGD-M)
. . — 0.750 -
(for example, zero is often a lower bound), then a better model is " — 2F — and,. 9 0.6-
= 0.725
k k ~ 3
my(x) = maxy f(x", sp) + (gp, x — x inf f(-,s)}. | = 0.4
| @) {f( Sk 49 ’ _>’ S8} Our method: truncate the momentum model at a lower bound estimate f* 0700
This leads to the stochastic Polyak step size [6, 4 | avg . p— 0.2 -
. L my(z) == max{m; (), f'}. (3)
k1 k ! f(:l? ’ Sk) — e f(’ Sk) k n : : : i 105 10-3 10! 10! 0.0 5 3 = 1 3
TT =X — min g Qg P k- (SPS) E.g. f7 = 0 for positive losses. Plugging (3) into update formula (2) gives i 10 10 10 10 10
L — Learning rate
k k
: ; L = 4 — 1N {Ozk; HdkH2 } ks ( O O) Figure 2. On the x-axis, we vary the (constant) learning rate ;. Left: DLRM on Criteo.
- - Right: ResNet110 on CIFAR100.
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Where fk‘ « T /Bfk—l 1 (1 - /B)f(x ’ Sk‘)) —0— adamw —@— momo-adam =@~ adamw, Ir_schedule=constant
—2 ] =@ adamw, Ir_schedule=cosine
1- 1- Vi = Bye—1 + (1 = BNV f(a", s), z"). 0.7 L & T, b
_ _ A\ 5 . — 1.5 x 1072+ wl
MoMo can also handle weight decay by adding a term 5||z||” in (2). 5 [ PN N
2 2 - @ éO ' \\\
;% £ 14x1072 \\.\
An Adam version = 0.65 O
0- 0- ~ | &
i i ' .. . 1.3 % 102" e
! ’ ! ’ We can see Adam [3] as preconditioned SGD-M, that is 0601 —— . — ——————
— _ Learning rate Learning rate
. . Vi = DoUp_ 1 — — \/ U
Figure 1. Denote Wi(z) := my(x) + 2%%Hx — 2%||%. Left: Linear model ij 6i b1+ | B2)(gk © ), &1 VU
my(x) = f(zF, s;) + (gr, x — 2¥). Right: Truncated model X =T — O dy.. Figure 3. Left: ViT on Imagenet. Right: Diffusion model; Adam diverges for large o
_ k k : .. . .
my() = max{f(z", sx) + {gr, @ — %), inf f(-, 5)} This is a model-based update with adaptive norm: References
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Available in Pytorch and Optax:

(compatible with weight decay, omitted bias correction here for simplicity)

Note: The same technique can be applied to any preconditioner 1)1 pip install momo-opt
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