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TLDR

How to use knowledge on lower bounds of the loss to reduce tuning effort
for the learning rate of momentum methods like SGD-M and Adam.

Background

We consider training problems of the form
min
x∈Rd

f (x), f (x) = Es∼D[f (x, s)], (1)

with parameters x ∈ Rd, batch of data s from train set D, and loss f (x, s).

Model-based stochastic optimization (cf. [1, 2])

Many stochastic optimization methods can be summarized as follows: in each
iteration sample sk, then build model mk(x) of the loss, then update

xk+1 = arg min
x∈Rd

mk(x) + 1
2αk

‖x − xk‖2. (2)

1) Linear model: if we choose mk(x) = f (xk, sk) + 〈gk, x − xk〉 where
gk = ∇f (xk, sk), then

xk+1 = xk − αkgk. (SGD)

2) Truncated model: if we know a lower bound inf f (·, s) of the loss
(for example, zero is often a lower bound), then a better model is

mk(x) = max{f (xk, sk) + 〈gk, x − xk〉, inf f (·, s)}.

This leads to the stochastic Polyak step size [6, 4]

xk+1 = xk − min
{

αk,
f (xk, sk) − inf f (·, sk)

‖gk‖2

}
gk. (SPS)
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Figure 1. Denote Ψk(x) := mk(x) + 1
2αk

‖x − xk‖2. Left: Linear model
mk(x) = f (xk, sk) + 〈gk, x − xk〉. Right: Truncated model

mk(x) = max{f (xk, sk) + 〈gk, x − xk〉, inf f (·, s)}.

Observation 1

Because SPS uses a better model, it needs less tuning for the user-specified
learning rate αk than SGD.

Research Questions

Question 1: In practice, momentum typically improves training. How
to combine momentum and SPS?
Question 2: Can we improve upon Adam by using a better model?

MoMo: model-based momentum

Main insight: Build a model for f (x) and not for f (x, s).
We can build a model of f (x) by taking a weighted average over past data
points. With weights ρj,k > 0 and

∑k
j=1 ρj,k = 1, we have that

f (x) = Es∼D[f (x, s)] ≈
k∑

j=1
ρj,kf (x, sj).

Linearizing each loss around the point it was last sampled gives the model

mavg
k (x) :=

k∑
j=1

ρj,k

[
f (xj, sj) + 〈∇f (xj, sj), x − xj〉

]
.

Using exponential moving averages, that is ρj,k = (1 − β)βk−j, update
(2) with mavg

k (x) turns out to be SGD with momentum [5], given by
dk = βdk−1 + (1 − β)∇f (xk, sk),

xk+1 = xk − αkdk.
(SGD-M)

Our method: truncate the momentum model at a lower bound estimate fk
∗

mk(x) := max{mavg
k (x), f k

∗ }. (3)
E.g. fk

∗ = 0 for positive losses. Plugging (3) into update formula (2) gives

xk+1 = xk − min
{

αk,
(f̄k + 〈dk, xk〉 − γk − fk

∗ )+

‖dk‖2

}
dk, (MoMo)

where f̄k := βf̄k−1 + (1 − β)f (xk, sk),
γk := βγk−1 + (1 − β)〈∇f (xk, sk), xk〉.

MoMo can also handle weight decay by adding a term λ
2‖x‖2 in (2).

An Adam version

We can see Adam [3] as preconditioned SGD-M, that is
vk = β2vk−1 + (1 − β2)(gk � gk), Dk = ε +

√
vk,

xk+1 = xk − αkDk
−1dk.

This is a model-based update with adaptive norm:

xk+1 = arg min
x∈Rd

mavg
k (x) + 1

2αk
‖x − xk‖2

Dk
.

Plugging in the MoMo model (3) instead, we obtain

xk+1 = xk − min
{

αk,
(f̄k + 〈dk, xk〉 − γk − fk

∗ )+

‖dk‖2
Dk

}
D−1

k dk. (MoMo-Adam)

(compatible with weight decay, omitted bias correction here for simplicity)

Note: The same technique can be applied to any preconditioner Dk!

Theory

If f (·, s) is convex, interpolation inf f (·, s) = f (x∗, s) =: f ∗

holds for all s, and has locally bouned gradients with
maxx : ‖x−x∗‖≤‖x1−x∗‖ Es∼D‖∇f (x, s)‖2 =: G2 < ∞ then MoMo with
fk

∗ = f ∗, αk = +∞ converges

min
k=1,...,K

E[f (xk) − f (x∗)] ≤ G‖x1 − x∗‖√
K(1 − β)

.

+ online lower bound estimation (see paper for details).

Experimental setup

The step size of MoMo is the minimum of a (user-specified) learning rate
αk and an adaptive term (computed on the fly).
Main question: can this reduce the tuning effort for αk?

Results
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Figure 2. On the x-axis, we vary the (constant) learning rate αk. Left: DLRM on Criteo.
Right: ResNet110 on CIFAR100.
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Figure 3. Left: ViT on Imagenet. Right: Diffusion model; Adam diverges for large αk.
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Available in Pytorch and Optax:

pip install momo-opt
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